Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 676
Filtrar
1.
Materials (Basel) ; 17(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612205

RESUMO

Aluminosilicates, such as montmorillonite, kaolinite, halloysite, and diatomite, have a uniform bidimensional structure, a high surface-to-volume ratio, inherent stiffness, a dual charge distribution, chemical inertness, biocompatibility, abundant active groups on the surface, such as silanol (Si-OH) and/or aluminol (Al-OH) groups. These compounds are on the list of U.S. Food and Drug Administration-approved active compounds and excipients and are used for various medicinal products, such as wound healing agents, antidiarrheals, and cosmetics. This review summarizes the wound healing mechanisms related to the material characteristics and the chemical components. Numerous wound dressings with different active components and multiple forms have been studied. Then, medicinal mineral resources for use in hemostatic materials can be developed.

2.
Pest Manag Sci ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587112

RESUMO

BACKGROUND: Entomopathogenic fungi (EPF) treatment of plants may affect the survival and feeding preferences of herbivorous pests. However, comprehensive studies on the fitness across their entire life cycle, feeding behavior, and physiological changes in herbivores consuming EPF-treated plants within the tripartite interactions of EPF, plants, and pests are still limited. In this study, we utilized life tables, electrical penetration graph (EPG), and metabolomics to uncover the biological and physiological characteristics of Bemisia tabaci on tomato plants inoculated with Beauveria bassiana through root irrigation. RESULTS: Our study indicated that Beauveria bassiana Bb252 can penetrate the entire tissue from the point of inoculation, primarily colonizing the intercellular spaces and vascular tissue. However, this colonization is temporary, lasting no more than 35 days. Moreover, the population fitness and feeding behavior of Bemisia tabaci on tomato plants treated with Beauveria bassiana via root irrigation were significantly affected, showing a substantial 41.4% decrease in net reproductive rate (R0), a notable reduction in watery salivation, and shortened phloem ingestion. Lastly, we observed a significant decrease in hormones and amino acids of whiteflies that fed on Beauveria bassiana-treated tomato plants by root irrigation. CONCLUSIONS: Our results indicated that the endophyte, Beauveria bassiana Bb252, reduced demographic fitness of Bemisia tabaci by altering its hormones and amino acids levels. These findings enhance our understanding of multitrophic interactions in integrated pest management. © 2024 Society of Chemical Industry.

3.
Ecotoxicol Environ Saf ; 276: 116317, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615641

RESUMO

We have previously shown that excessive activation of macrophage proinflammatory activity plays a key role in TCE-induced immune liver injury, but the mechanism of polarization is unclear. Recent studies have shown that TLR9 activation plays an important regulatory role in macrophage polarization. In the present study, we demonstrated that elevated levels of oxidative stress in hepatocytes mediate the release of mtDNA into the bloodstream, leading to the activation of TLR9 in macrophages to regulate macrophage polarization. In vivo experiments revealed that pretreatment with SS-31, a mitochondria-targeting antioxidant peptide, reduced the level of oxidative stress in hepatocytes, leading to a decrease in mtDNA release. Importantly, SS-31 pretreatment inhibited TLR9 activation in macrophages, suggesting that hepatocyte mtDNA may activate TLR9 in macrophages. Further studies revealed that pharmacological inhibition of TLR9 by ODN2088 partially blocked macrophage activation, suggesting that the level of macrophage activation is dependent on TLR9 activation. In vitro experiments involving the extraction of mtDNA from TCE-sensitized mice treated with RAW264.7 cells further confirmed that hepatocyte mtDNA can activate TLR9 in mouse peritoneal macrophages, leading to macrophage polarization. In summary, our study comprehensively confirmed that TLR9 activation in macrophages is dependent on mtDNA released by elevated levels of oxidative stress in hepatocytes and that TLR9 activation in macrophages plays a key role in regulating macrophage polarization. These findings reveal the mechanism of macrophage activation in TCE-induced immune liver injury and provide new perspectives and therapeutic targets for the treatment of OMDT-induced immune liver injury.

4.
Nanomaterials (Basel) ; 14(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607108

RESUMO

The application of transition metal hydroxides has long been plagued by its poor conductivity and stability as well as severe aggregation tendency. In this paper, a novel hierarchical core-shell architecture, using an F-doped Co(OH)2 nanorod array (Co(OH)F) as the core and Mn/Ni co-doped Co(OH)2 nanosheets (NiCoMn-LDH) as the shell, was constructed via an MOF-mediated in situ generation method. The obtained Co(OH)F@ NiCoMn-LDH composites exhibited excellent supercapacitive performance with large specific capacitance as well as improved rate capability and long-term stability. The effect of the Ni/Mn ratio on the supercapacitive performance and energy storage kinetics was systematically investigated and the related mechanism was revealed.

5.
Biotechnol Lett ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662307

RESUMO

Dye contamination in printing and dyeing wastewater has long been a major concern due to its serious impact on both the environment and human health. In the quest for bioremediation of these hazardous dyes, biological resources such as biodegradation bacteria and enzymes have been investigated in severely polluted environments. In this context, the triphenylmethane transporter gene (tmt) was identified in six distinct clones from a metagenomic library of the printing and dyeing wastewater treatment system. Escherichia coli expressing tmt revealed 98.1% decolorization efficiency of triphenylmethane dye malachite green within 24 h under shaking culture condition. The tolerance to malachite green was improved over eightfold in the Tmt strain compared of the none-Tmt expressed strain. Similarly, the tolerance of Tmt strain to other triphenylmethane dyes like crystal violet and brilliant green, was improved by at least fourfold. Site-directed mutations, including A75G, A75S and V100G, were found to reinforce the tolerance of malachite green, and double mutations of these even further improve the tolerance. Therefore, the tmt has been demonstrated to be a specific efflux pump for triphenylmethane dyes, particularly the malachite green. By actively pumping out toxic triphenylmethane dyes, it significantly extends the cells tolerance in a triphenylmethane dye-rich environment, which may provide a promising strategy for bioremediation of triphenylmethane dye pollutants in the environments.

6.
J Funct Biomater ; 15(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535268

RESUMO

Montmorillonite has been refined to overcome uncertainties originating from different sources, which offers opportunities for addressing various health issues, e.g., cosmetics, wound dressings, and antidiarrheal medicines. Herein, three commercial montmorillonite samples were obtained from different sources and labeled M1, M2, and M3 for Ca-montmorillonite, magnesium-enriched Ca-montmorillonite, and silicon-enriched Na-montmorillonite, respectively. Commercial montmorillonite was refined via ultrasonic scission-differential centrifugation and labeled S, M, or L according to the particle sizes (small, medium, or large, respectively). The size distribution decreased from 2000 nm to 250 nm with increasing centrifugation rates from 3000 rpm to 12,000 rpm. Toxicological evaluations with human colon-associated cells and human skin-associated cells indicated that side effects were correlated with excess dosages and silica sand. These side effects were more obvious with human colon-associated cells. The microscopic interactions between micro/nanosized montmorillonite and human colon-associated cells or human skin-associated cells indicated that those interactions were correlated with the size distributions. The interactions of the M1 series with the human cells were attributed to size effects because montmorillonite with a broad size distribution was stored in the M1 series. The M2 series interactions with human cells did not seem to be correlated with size effects because large montmorillonite particles were retained after refining. The M3 series interactions with human cells were attributed to size effects because small montmorillonite particles were retained after refining. This illustrates that toxicological evaluations with refined montmorillonite must be performed in accordance with clinical medical practices.

7.
Mol Cancer ; 23(1): 52, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461272

RESUMO

BACKGROUND: Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is one of the causes of tumor immune tolerance and failure of cancer immunotherapy. Here, we found that bladder cancer (BCa)-derived exosomal circRNA_0013936 could enhance the immunosuppressive activity of PMN-MDSCs by regulating the expression of fatty acid transporter protein 2 (FATP2) and receptor-interacting protein kinase 3 (RIPK3). However, the underlying mechanism remains largely unknown. METHODS: BCa-derived exosomes was isolated and used for a series of experiments. RNA sequencing was used to identify the differentially expressed circRNAs. Western blotting, immunohistochemistry, immunofluorescence, qRT-PCR, ELISA and Flow cytometry were performed to reveal the potential mechanism of circRNA_0013936 promoting the immunosuppressive activity of PMN-MDSC. RESULTS: CircRNA_0013936 enriched in BCa-derived exosomes could promote the expression of FATP2 and inhibit the expression of RIPK3 in PMN-MDSCs. Mechanistically, circRNA_0013936 promoted the expression of FATP2 and inhibited the expression of RIPK3 expression via sponging miR-320a and miR-301b, which directly targeted JAK2 and CREB1 respectively. Ultimately, circRNA_0013936 significantly inhibited the functions of CD8+ T cells by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway, and down-regulating RIPK3 through the circRNA_0013936/miR-301b/CREB1 pathway in PMN-MDSCs. CONCLUSIONS: BCa-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway and down-regulating RIPK3 through the circRNA_0013936/miR-301b-3p/CREB1 pathway in PMN-MDSCs. These findings help to find new targets for clinical treatment of human bladder cancer.


Assuntos
MicroRNAs , Células Supressoras Mieloides , RNA Circular , Neoplasias da Bexiga Urinária , Humanos , Linfócitos T CD8-Positivos/metabolismo , Ácidos Graxos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Supressoras Mieloides/metabolismo , Proteínas Quinases/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Exossomos/genética , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
8.
ACS Appl Mater Interfaces ; 16(13): 17007-17015, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38528767

RESUMO

The wettable surface or nonwettable surface that is derived from a multilevel micronanoscale structure is abundant in nature and biomimetic commodities. Those hoverflies with the seta-coated wing membrane detached from impacting free-falling raindrops were observed in static states. A hoverfly wing membrane with well-ordered setae was identified as a robust nonwettable surface, and the static water contact angle θ on the wing membrane at the microscopic scale is 136.84 ± 0.98°. Hoverfly wing membrane-water droplet interaction with the actual truth and the theoretical models was discussed and indicated that the theoretical calculation might not state the actual situation, arising from the membrane or seta-drop-bubble interaction and those multilevel micronanoscale structure characteristics on the wing membrane. Detailed investigation on nonwettable surface-wettable surface transformation with surface CaCO3 accumulation in a carbonization reaction and the characteristic transformation toward the hoverfly wing membrane with the multilevel micronanoscale structure was carried out. Then, the CaCO3 accumulation on PDMS texture films was carried out and the static water contact angle θ was tested. Those observations offer ideas to fabricate artificial films with a multilevel micronanoscale structure that could obtain some characteristics, i.e., nonwettable surface-wettable surface transformation.

9.
Int Neurourol J ; 28(Suppl 1): 12-33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38461853

RESUMO

Overactive bladder (OAB) is a symptom-based syndrome defined by urinary urgency, frequency, and nocturia with or without urge incontinence. The causative pathology is diverse; including bladder outlet obstruction (BOO), bladder ischemia, aging, metabolic syndrome, psychological stress, affective disorder, urinary microbiome, localized and systemic inflammatory responses, etc. Several hypotheses have been suggested as mechanisms of OAB generation; among them, neurogenic, myogenic, and urothelial mechanisms are well-known hypotheses. Also, a series of local signals called autonomous myogenic contraction, micromotion, or afferent noises, which can occur during bladder filling, may be induced by the leak of acetylcholine (ACh) or urothelial release of adenosine triphosphate (ATP). They can be transmitted to the central nervous system through afferent fibers to trigger coordinated urgency-related detrusor contractions. Antimuscarinics, commonly known to induce smooth muscle relaxation by competitive blockage of muscarinic receptors in the parasympathetic postganglionic nerve, have a minimal effect on detrusor contraction within therapeutic doses. In fact, they have a predominant role in preventing signals in the afferent nerve transmission process. ß3-adrenergic receptor (AR) agonists inhibit afferent signals by predominant inhibition of mechanosensitive Aδ-fibers in the normal bladder. However, in pathologic conditions such as spinal cord injury, it seems to inhibit capsaicin-sensitive C-fibers. Particularly, mirabegron, a ß3-agonist, prevents ACh release in the BOO-induced detrusor overactivity model by parasympathetic prejunctional mechanisms. A recent study also revealed that vibegron may have 2 mechanisms of action: inhibition of ACh from cholinergic efferent nerves in the detrusor and afferent inhibition via urothelial ß3-AR.

10.
J Am Chem Soc ; 146(11): 7152-7158, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38421279

RESUMO

Cove-edged zigzag graphene nanoribbons are predicted to show metallic, topological, or trivial semiconducting band structures, which are precisely determined by their cove offset positions at both edges as well as the ribbon width. However, due to the challenge of introducing coves into zigzag-edged graphene nanoribbons, only a few cove-edged graphene nanoribbons with trivial semiconducting bandgaps have been realized experimentally. Here, we report that the topological band structure can be realized in cove-edged graphene nanoribbons by embedding periodic pentagon rings on the cove edges through on-surface synthesis. Upon noncontact atomic force microscopy and scanning tunneling spectroscopy measurements, the chemical and electronic structures of cove-edged graphene nanoribbons with periodic pentagon rings have been characterized for different lengths. Combined with theoretical calculations, we find that upon inducing periodic pentagon rings the cove-edged graphene nanoribbons exhibit nontrivial topological structures. Our results provide insights for the design and understanding of the topological character in cove-edged graphene nanoribbons.

11.
Artigo em Chinês | MEDLINE | ID: mdl-38297876

RESUMO

Chronic rhinosinusitis (CRS) is a common chronic inflammatory disease in otorhinolaryngology, in which eosinophilic chronic rhinosinusitis with nasal polyps represents the difficult-to-treat chronic rhinosinusitis (DTCRS) with poor prognosis. DTCRS has a poor prognosis, which seriously affects people's physical and mental health, and is treated with various means, including medication, biotherapy and surgery. In recent years, endoscopic sinus surgery and postoperative local administration of nasal hormones as one of its treatment methods have achieved good results. In this paper, we review the relevant literature at home and abroad and give an overview for the treatment means of surgery, focusing on the effect of endoscopic sinus surgery on the distributable range of postoperative nasal glucocorticosteroids in patients with DTCRS, and then on the postoperative efficacy of the treatment, with a view to providing a reference for the clinical treatment of DTCRS.


Assuntos
Pólipos Nasais , Seios Paranasais , Rinite , Sinusite , Humanos , Rinite/terapia , Seios Paranasais/cirurgia , Sinusite/terapia , Corticosteroides/uso terapêutico , Pólipos Nasais/cirurgia , Doença Crônica
12.
Chemistry ; 30(19): e202304270, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38285527

RESUMO

With peptides increasingly favored as drugs, natural product motifs, namely the tryptathionine staple, found in amatoxins and phallotoxins, and the 2,2'-bis-indole found in staurosporine represent unexplored staples for unnatural peptide macrocycles. We disclose the efficient condensation of a 5-hydroxypyrroloindoline with either a cysteine-thiol or a tryptophan-indole to form a tryptathionine or 2-2'-bis-indole staple. Judicious use of protecting groups provides for chemoselective stapling using α-MSH, which provides a basis for investigating both chemoselectivity and affinity. Both classes of stapled peptides show nanomolar Ki's, with one showing a sub-nanomolar Ki value.


Assuntos
Peptídeos Cíclicos , alfa-MSH/análogos & derivados , Cisteína , Indóis
13.
PLoS One ; 19(1): e0297149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241311

RESUMO

With the emergence of penicillin resistance, the development of novel antibiotics has become an urgent necessity. Semi-synthetic penicillin has emerged as a promising alternative to traditional penicillin. The demand for the crucial intermediate, 6-aminopicillanic acid (6-APA), is on the rise. Enzyme catalysis is the primary method employed for its production. However, due to certain limitations, the strategy of enzyme immobilization has also gained prominence. The magnetic Ni0.4Cu0.5Zn0.1Fe2O4 nanoparticles were successfully prepared by a rapid-combustion method. Sodium silicate was used to modify the surface of the Ni0.4Cu0.5Zn0.1Fe2O4 nanoparticles to obtain silica-coated nanoparticles (Ni0.4Cu0.5Zn0.1Fe2O4-SiO2). Subsequently, in order to better crosslink PGA, the nanoparticles were modified again with glutaraldehyde to obtain glutaraldehyde crosslinked Ni0.4Cu0.5Zn0.1Fe2O4-SiO2-GA nanoparticles which could immobilize the PGA. The structure of the PGA protein was analyzed by the PyMol program and the immobilization strategy was determined. The conditions of PGA immobilization were investigated, including immobilization time and PGA concentration. Finally, the enzymological properties of the immobilized and free PGA were compared. The optimum catalytic pH of immobilized and free PGA was 8.0, and the optimum catalytic temperature of immobilized PGA was 50°C, 5°C higher than that of free PGA. Immobilized PGA in a certain pH and temperature range showed better catalytic stability. Vmax and Km of immobilized PGA were 0.3727 µmol·min-1 and 0.0436 mol·L-1, and the corresponding free PGA were 0.7325 µmol·min-1 and 0.0227 mol·L-1. After five cycles, the immobilized enzyme activity was still higher than 25%.


Assuntos
Nanopartículas , Penicilina Amidase , Penicilina Amidase/química , Penicilina Amidase/metabolismo , Glutaral/química , Dióxido de Silício/química , Enzimas Imobilizadas/química , Catálise , Nanopartículas/química , Penicilinas , Fenômenos Magnéticos , Concentração de Íons de Hidrogênio , Temperatura , Estabilidade Enzimática
14.
Mar Drugs ; 22(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38248663

RESUMO

Mangrove-derived actinomycetes represent a rich source of novel bioactive natural products in drug discovery. In this study, four new polyene macrolide antibiotics antifungalmycin B-E (1-4), along with seven known analogs (5-11), were isolated from the fermentation broth of the mangrove strain Streptomyces hiroshimensis GXIMD 06359. All compounds from this strain were purified using semi-preparative HPLC and Sephadex LH-20 gel filtration while following an antifungal activity-guided fractionation. Their structures were elucidated through spectroscopic techniques including UV, HR-ESI-MS, and NMR. These compounds exhibited broad-spectrum antifungal activity against Talaromyces marneffei with minimum inhibitory concentration (MIC) values being in the range of 2-128 µg/mL except compound 2. This is the first report of polyene derivatives produced by S. hiroshimensis as bioactive compounds against T. marneffei. In vitro studies showed that compound 1 exerted a significantly stronger antifungal activity against T. marneffei than other new compounds, and the antifungal mechanism of compound 1 may be related to the disrupted cell membrane, which causes mitochondrial dysfunction, resulting in leakage of intracellular biological components, and subsequently, cell death. Taken together, this study provides a basis for compound 1 preventing and controlling talaromycosis.


Assuntos
Antifúngicos , Macrolídeos , Streptomyces , Talaromyces , Antifúngicos/farmacologia , Macrolídeos/farmacologia , Antibacterianos/farmacologia
15.
Nanomaterials (Basel) ; 14(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38251149

RESUMO

Surface engineering has been proved efficient and universally applicable in improving the performance of CeO2 in various fields. However, previous approaches have typically required high-temperature calcination or tedious procedures, which makes discovery of a moderate and facile modification approach for CeO2 an attractive subject. In this paper, porous CeO2 nanosheets with effective nitrogen-doping were synthesized via a low-temperature NH3/Ar plasma treatment and exhibited boosted hydrogen evolution reaction performance with low overpotential (65 mV) and long-term stability. The mechanism of the elevated performance was investigated by introducing Ar-plasma-treated CeO2 with no nitrogen-doping as the control group, which revealed the dominant role of nitrogen-doping by providing abundant active sites and improving charge transfer characteristics. This work illuminates further investigations into the surface engineering methodologies boosted by plasma and the relative mechanism of the structure-activity relationship.

16.
Biomed Pharmacother ; 170: 116092, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157642

RESUMO

Atherosclerosis significantly contributes to the development of cardiovascular diseases (CVD) and is characterized by lipid retention and inflammation within the artery wall. Multiple immune cell types are implicated in the pathogenesis of atherosclerosis, macrophages play a central role as the primary source of inflammatory effectors in this pathogenic process. The metabolic influences of lipids on macrophage function and fatty acid ß-oxidation (FAO) have similarly drawn attention due to its relevance as an immunometabolic hub. This review discusses recent findings regarding the impact of mitochondrial-dependent FAO in the phenotype and function of macrophages, as well as transcriptional regulation of FAO within macrophages. Finally, the therapeutic strategy of macrophage FAO in atherosclerosis is highlighted.


Assuntos
Aterosclerose , Ácidos Graxos , Humanos , Ácidos Graxos/metabolismo , Macrófagos/metabolismo , Aterosclerose/metabolismo , Regulação da Expressão Gênica , Inflamação/metabolismo
17.
Nanomicro Lett ; 16(1): 16, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975962

RESUMO

Carbon-based aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight, controllable fabrication and versatility. Nevertheless, developing a facile construction method of component design with carbon-based aerogels for high-efficiency electromagnetic wave absorption (EWA) materials with a broad effective absorption bandwidth (EAB) and strong absorption yet hits some snags. Herein, the nitrogen-doped magnetic-dielectric-carbon aerogel was obtained via ice template method followed by carbonization treatment, homogeneous and abundant nickel (Ni) and manganese oxide (MnO) particles in situ grew on the carbon aerogels. Thanks to the optimization of impedance matching of dielectric/magnetic components to carbon aerogels, the nitrogen-doped magnetic-dielectric-carbon aerogel (Ni/MnO-CA) suggests a praiseworthy EWA performance, with an ultra-wide EAB of 7.36 GHz and a minimum reflection loss (RLmin) of - 64.09 dB, while achieving a specific reflection loss of - 253.32 dB mm-1. Furthermore, the aerogel reveals excellent radar stealth, infrared stealth, and thermal management capabilities. Hence, the high-performance, easy fabricated and multifunctional nickel/manganese oxide/carbon aerogels have broad application aspects for electromagnetic protection, electronic devices and aerospace.

18.
BMC Public Health ; 23(1): 2187, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936099

RESUMO

BACKGROUND: Schools are high incidence places for public health emergencies. Good health literacy helps students cope with public health emergencies. Overall, the health literacy of young students is relatively low. Health education can promote health literacy, but the health education related to public health emergencies for Chinese junior middle school students needs to be improved. To design and implement health education courses related to public health emergencies for junior middle school students and examine the impact on their health literacy, emotions, and coping styles. METHODS: From March to December 2022, 724 students in Grade 7 and Grade 8 of two junior middle schools in Changzhou were randomly divided into a course group (n = 359) and a control group (n = 365). The course group received an age-appropriate health education course that addressed public health emergencies; there were 12 classes, one per week. The control group received general health education. One week before and after the courses, the two groups of students were assessed with the Adolescent Health Literacy Evaluation Scale under Public Health Emergencies (AHLES-PHE), the Depression Self-Rating Scale for Children (DSRSC), the Generalized Anxiety Disorder 7-item scale (GAD-7), and the Simplified Coping Style Questionnaire (SCSQ). RESULTS: After the courses were completed, the scores of AHLES-PHE [156.0 (45.0,180.0) vs. 165.0 (54.0,180.0), P < 0. 05] in the course group increased significantly. The positive rate of DSRSC [81 (22.6%) vs. 57 (15.9%), P < 0.05] and GAD-7 [45 (12.5%) vs. 29 (8.1), P < 0.05]in the course group were significantly lower than those before courses. There was no significant difference in the above indices before and after courses in the control group (P > 0.05). CONCLUSION: This suggests that the health education courses related to public health emergencies designed in this study has an effect on improving health literacy, depression and anxiety in junior middle school students.


Assuntos
Letramento em Saúde , Criança , Adolescente , Humanos , Saúde Pública , Promoção da Saúde , Emergências , População do Leste Asiático , Adaptação Psicológica , Estudantes , Ansiedade/psicologia
19.
JACC Case Rep ; 23: 102006, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37954950

RESUMO

Homologous ventricular electrical separation is a rare electrocardiogram manifestation; it is defined as a specific subtype of ventricular separation caused by excitation that originates from the supraventricular rhythm and travels through the His-Pukenje system, resulting in severe asynchrony of biventricular depolarization and production of 2 QRS complexes. It always indicates irreversible cardiac impairment and electrical instability. (Level of Difficulty: Advanced.).

20.
New Phytol ; 240(6): 2436-2454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37840365

RESUMO

Seed size and weight are important factors that influence soybean yield. Combining the weighted gene co-expression network analysis (WGCNA) of 45 soybean accessions and gene dynamic changes in seeds at seven developmental stages, we identified candidate genes that may control the seed size/weight. Among these, a PLATZ-type regulator overlapping with 10 seed weight QTLs was further investigated. This zinc-finger transcriptional regulator, named as GmPLATZ, is required for the promotion of seed size and weight in soybean. The GmPLATZ may exert its functions through direct binding to the promoters and activation of the expression of cyclin genes and GmGA20OX for cell proliferation. Overexpression of the GmGA20OX enhanced seed size/weight in soybean. We further found that the GmPLATZ binds to a 32-bp sequence containing a core palindromic element AATGCGCATT. Spacing of the flanking sequences beyond the core element facilitated GmPLATZ binding. An elite haplotype Hap3 was also identified to have higher promoter activity and correlated with higher gene expression and higher seed weight. Orthologues of the GmPLATZ from rice and Arabidopsis play similar roles in seeds. Our study reveals a novel module of GmPLATZ-GmGA20OX/cyclins in regulating seed size and weight and provides valuable targets for breeding of crops with desirable agronomic traits.


Assuntos
Transcriptoma , /genética , Transcriptoma/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...